
Windows™ Speech Recognition Toolkit

A Speech Recognition Utility © 2021 MyMSSpeech.com

Introduction

Thank you for your interest in the Windows™ Speech Recognition Toolkit. We hope this product
will serve you well and that you will have many rewarding hours of hands-free computing as a
result of using its features.

The Windows™ Speech Recognition Toolkit was developed by eMicrophones, Inc.
which has 15 years experience in the Speech Recognition industry. Since previewing Windows®
Speech Recognition at Redmond in the summer of 2006 we thought very highly of the accuracy
of the speech engine, the ability to command and control one's computer and the forethought
given to the graphical user interface. However, we realized some important features typical in
other Speech Recognition software was missing. The WSR Toolkit is meant to fill in the gaps and
make a typical home or business user more efficient.

The Text Macro Builder easily allows you to create re-usable boilerplate text. The text is
inserted when you issue the name you called the text block when creating it.

Three other features improve the accuracy of your personal user speech profile. These are:

1. Train From Text - improves the "acoustic model" of your speech profile.
It allows you to train from text of your choosing. We recommend you begin with "The Rainbow
Passage" default text as it has an even distribution of the phonemes of the English language.

2. Add To Dictionary - Adds words to your personal speech dictionary (with or without
pronunciation) for increased recognition accuracy.

3. Add From File - improves the "language model" of your speech profile by taking the text you
pass it (currently Word documents and text files), parses it into words, and then records the
relative frequencies of occurrence of each word with respect to the words around it.

Professionals on the run requested a Transcription tool to transcribe .wav files from a high
quality digital recorder into text. With our Transcription tool, point to a .wav file (some
recorders must convert from .dss files to .wav) for transcribing into text easily copied/pasted
into another document.

Table of Contents
Introduction .. 2

Table of Contents .. 3

Installing the WSR Toolkit ... 4

Text Macros... 5

Command Macros ... 8

Macro Editor ... 16

Train From Text ... 22

Add To Dictionary ... 23

Transcription ... 25

Add From File .. 26

Tips & Tricks .. 28

Index .. 29

Installing the WSR Toolkit

After downloading the install file and executing it, you’ll be prompted for an install directory.
Once selected, the install process will begin...

The Toolkit installation checks your machine for the Microsoft .NET 3.5 Framework (or greater)
and if it’s not installed, it will ask your permission to install. After installation, there will be
three shortcuts on your desktop to the WSR Toolkit application, the user’s manual and the
readme.txt file.

Once the WSR Macro facility is installed and running, you'll want to set macro security level to
'low' as follows:

1. Right-click on the Windows Speech Recognition Macros icon in your system tray (bottom

right corner of your computer screen)
2. Click 'Security' then 'Set security Level'. Choose 'Low'.

This is an acceptable option while you become familiar with the WSR Toolkit and develop
your macros. You can always come back to here and set the security level to 'high' as well
as digitally sign your macros once you gain more familiarity with the macro system. You
may decide it is desirable to leave the security level set to low.

Text Macros

On this tab you’ll be able to create macros that insert text into a document or other application.
Take a look at the screenshot for this tab and then we’ll walk through the creation of a typical
Text Macro.

(Assuming Speech Recognition is active and listening...)

You say:
When I say

*The cursor moves to the ‘When I Say’ text box area. +

(Notice the letter W is underlined in When I say. That means you can press and hold down the
ALT then press the w and the cursor will move to this location. In fact, anytime you see an
underlined letter you can hold down the ALT key while pressing that letter and you’ll move the
cursor to that area.)

Once the cursor is in this textbox you can say (or type) your “trigger word”. That is, the word
you want the Speech Macros system to listen for.

You say:
my return address is

*the text “my return address is” appears in the ‘When I Say’ textbox+

If you’re speaking to this program and not typing, you may sometime encounter recognition
errors; for instance, instead of “my return address” it might think you said something like “my
return add rest is”. No problem, just say “correct add rest” and you’ll be presented with
choices that sound similar to what you’ve just said. All you have to do now is say the number
that corresponds to the correct representation. If it still misunderstands you, say it again, if the
recognition is still off, just say spell it and you can spell it letter-by-letter.

You say:
Insert the text

*The cursor moves to the ‘Insert The Text’ text box area.+

You say:
John Smith press enter
1 2 1 2 N period north street press enter
Greenfield comma o h press enter
open parenthesis 5 5 5 close parenthesis 5 5 5 hyphen 1 2 1 2 press enter
j smith at sign greenfield dot o h dot com press enter
w w w dot j smith dot g o h dot com press enter

[The text will be inserted as you talk (or type)]

You may have to experiment a bit to get the proper recognition.

Now let’s backup to the ‘In The Context Of’ textbox.

You say:
In the context of

[The cursor moves to that dropdown box and several options are displayed]

Here’s something similar to what you’ll see:

These are some of the more common applications you may be using. Before deciding whether
you’ll need to select one of these, Browse to find another or go with the default ‘Global’ option,
some explanation on what is meant by “context” is in order.

Let’s say you’d like to create a macro for Microsoft Word in which you say “back” and it will
automatically move you to the previous paragraph. But what if you’d also like to create a
macro in Firefox when you say “back” you’ll emulate clicking the back button? You can see the
need for context. “Back” could possibly mean different things in the context of different
programs. So what is the ‘Global’ context? The name pretty much explains it. With ‘Global -
All Applications’ selected your macro will work in all applications. In other words, the ‘In The
Context Of’ limits the functionality of your macro to a specific application.

So now the question is, do you need to limit your macro to a particular application? If so, and
the application you’d like to confine your macro to is listed in the list, just say the applications
name; “Winword” for Microsoft Word, for instance. If it’s not listed in the dropdown list, just
say (or click) ‘Browse’. Did you notice the underlined B in ‘Browse’. As previously mentioned,
that means you can also press and hold the ALT key while pressing the letter ‘b’. And just for
fun, you could also say “press alt b”! You’ll want browse to the location of the application
you’d like to choose, click on the program name and it will automatically be put in the context
textbox.

If, after proofreading your Text macro, you’re ready to create it, just say “Save”. For reference,
the ‘Cancel’ button allows you to clear the Text Macro tab and start fresh. The ‘Exit’ button will
close the program.

Command Macros

This tab is possibly the most exciting of all within this application. It allows you to control your
computer with voice commands that up until now have only been available with the keyboard
and mouse. Don’t be intimidated by all those buttons and textbox areas on this tab. We’ll
cover them thoroughly one-by-one. When we’re done, you’ll confidentially be creating
sophisticated macros that do some pretty amazing stuff!

Here’s the screenshot for this tab:

We’ve already covered the “In The Context Of” and the “When I Say” textbox areas, so if you’re
unsure about their use, just click the particular hyperlinked words to go there and read about
them.

Let’s create a real world example (two actually) that demonstrate the many features on the
Command Macros tab.

The first macro we want to create will listen for the words “surf the net” and responds by
opening the Firefox browser.

We’ll keep the context global because you’ll want this macro to work no matter what you’re
doing or what program you’re currently working in.

You say:
When I say

*The cursor moves to the ‘When I Say’ text box area.]

You say:
surf the net

*the text “surf the net” appears in the ‘When I Say’ textbox+

You say:
find program

*A file browsing window opens up that will allow you to point to the program you’d like to run.

You say:
mozilla firefox

[The directory will change to Mozilla Firefox - Note this may be different on your computer]

You say:
firefox

*firefox.exe is selected and the full path “C:\Program Files\Mozilla Firefox\firefox.exe” is placed
in the ‘Add A Program to Run’ textbox.+

You say:
add program

*The ‘Add a Program to Run’ textbox is cleared and the ‘Command Sequence Viewer’ displays
the text “RUN C:\Program Files\Mozilla Firefox\firefox.exe”.+ More on the Command Sequence
Viewer’ shortly...

You say:
create macro with command sequence

That’s it, you’ve created a Command Macro that will open the Firefox browser anytime you say
“surf the net”! Easy as 1-2-3, right? Well, almost...

Here’s a screenshot with the four different areas highlighted:

Next we’ll create a practical Command Macro that will only work in the context of Firefox and
will do the following things when you say ‘copy web address’.

1. Move the cursor to the address bar
2. Copy the web address of the current website into the clipboard

Now all you have to do is go to another application and say ‘paste’ and it will put that address
you just copied in the application! This is nice when you’d like to email a friend a website
address, for instance.

Here’s how to do it:

On the Command Macros tab -

You say:
In the context of

[The dropdown box drops down revealing commonly used programs.]

You say:
firefox

*Firefox.exe is displayed in the ‘In the Context Of’ text area.+

You say:
alt

[The ALT checkbox will be checked]

You say:
numbers letters words

*The cursor moves to the “Numbers, Letters, Words” textbox.+

You say:
d

*The letter d is placed in the “Numbers, Letters, Words” textbox.]

The keyboard shortcut ALT-d in Firefox will move the cursor to the address bar and highlight
whatever address is present.

(Notice the ‘Keystroke Preview’ area. This dynamically shows you the keystroke commands
that are going to be built.)

You say:
add

*The ‘Keystroke Preview’ area clears and the ‘Command Sequence Viewer’ displays a new line
of text.]

Now we need to insert a timing delay. This is necessary because it’s possible for the voice
recognition system to emulate key presses faster than the application (in this case Firefox) can
digest them. So we need to insert a negligible delay to allow the application to catch up. From
experience, .25 seconds is a good delay for this type of thing.

You say:
delay increment

*The cursor moves to the ‘Delay Increment’ numerical selection area.+

Okay, now for some fancy footwork! We need to (by voice control) click the up arrow five
times. That will give us a delay of .25 seconds. So you can either say “press up”, “press up”,
“press up”, “press up” “press up” OR simply say “press up five times”! Pretty neat, huh?

You say:
press up five times

*The ‘Delay Increment’ shows .25+

You say:
insert delay

*The ‘Delay Increment’ area resets back to 0.00 and the ‘Command Sequence Viewer’ displays a
new line of text.]

For the final sequence of our command macro, we need to emulate the keypress ctrl-c. That
copies whatever is highlighted to the clipboard (so you’ll be able to paste it somewhere else).

You say:
contol

[The CTRL checkbox is checked]

You say:
numbers letters words

*The cursor moves to the “Numbers, Letters, Words” textbox.+

You say:
c

[The letter c is placed in the “Numbers, Letters, Words” textbox.+

You say:
add

*The ‘Keystroke Preview’ area clears and the ‘Command Sequence Viewer’ displays a new line
of text.]

You should have three command sequences listed.

Now for a word about the ‘Command Sequence Viewer’ text area.

This is the area in which, as you build your Command Macro, allows you to essentially
“preview” the sequence of commands before you actually create the macro. It’s a great tool
for providing a visual double-check of your work in progress.

While on the subject of the ‘Command Sequence Viewer’ notice the Up, Down and Remove
buttons. The Up and Down buttons will allow you select various lines in your Command
Sequence. The Up simply moves up the list, the down highlights the next item in the list. Once
an item is selected, you can say “Remove” and that particular sequence item will be removed
from the list. It’s simply a way to edit your macro before saving it.

Now that you’ve reviewed your command sequence in the ‘Command Sequence Viewer’...

You say:
create macro with command sequence

And that’s it, you’re done! The macro has been saved to the Speech Macros directory and
automatically loaded into the macro system which means it’s listening for your command. Go
ahead, try it! Just remember, since we set the context to “firefox.exe”, you’ll have to have
Firefox up as the active application.

With a little bit of creativity and thought, you’ll soon be creating voice command macros to do
just about anything imaginable on your computer!

Got a question? Still scratching your head about some of this? Just post your question to one
of the WSR macro forums and more than likely you’ll have an answer in short order.

Here are a couple of good forums:

http://www.msspeech-forum.com

http://tech.groups.yahoo.com/group/ms-speech/

http://www.msspeech-forum.com/
http://tech.groups.yahoo.com/group/ms-speech/

Here’s the screenshot, highlighting some key areas and text:

Take another quick look at the ‘Command Key’ dropdown box. This dropdown box contains
every “special key” that can be used with Windows. For example the ‘F1’ key.

Here’s a screenshot with a partial listing of command keys displayed:

This is how and where you’d craft command sequences like ‘ALT-HOME’, ‘SHIFT-F10’, etc...

The overall concept with command macros is simple. If you know the keyboard shortcut key(s)
necessary to accomplish your task, you can simply insert them here, in sequence, with delays to
accomplish your task via voice. Don’t know the keyboard shortcut? Search our additional
documentation for complete lists of the most popular applications keyboard shortcuts.

 Macro Editor

If you’re curious about Windows Speech Recognition Macros and want to learn more, you’re in
the right place. On this tab you’ll get to see the inner workings and details of the macro
language itself. If you’re not interested in this stuff, just skip over this section for now. You can
always come if you need to dig a little deeper.

Let’s jump right in with a screenshot of the Firefox macro created in the Command Macros
tutorial:

Don’t worry about all that code for now. Just know this is a great place to come if for some
reason you’re having a problem with a particular macro. You may decide to post a question
online and you can easily copy your macro code from here and paste it to a website for help.

The ‘Open’ button will allow you to browse to your Speech Macros directory and select any file
you macro file you wish. Note: Macro files end with the extension .WSRMac.

The ‘Save As’ button will allow you to save changes to your macro. Careful though. You should
have a good idea what your doing before doing any macro editing.

The ‘Cancel’ button clears any text in the macro textbox.

‘Exit’ will close the program.

For those wanting to know more, here are some of the (currently) available XML tags available
for Speech Macros along with a brief description.

Note these “tags” are case sensitive, you must use exact upper/lowercase as shown here.

<speechMacros>

All macro files must use this tag and end with a </speechMacros> tag. Only one set of
these is allowed for each macro file.

<command>

Required for every command and must be terminated with a </command> tag.

<listenFor>

This tag is what is used by the macro facility to listen for what is being spoken. It must
be enclosed in a </listenFor> tag.

For instance: <listenFor>surf the net</listenFor>

When the computer “hears” the word or phrase contained within this tag it will execute
everything within the preceding <command> tags.

<sendKeys>

Using this tag you can “send keys” to a particular application. It must be terminated
with a </sendKeys> tag. In Microsoft Word you may want to send the keys CTRL-p to
bring up the print dialog. In your macro code it would look like this:

<sendKeys>{{CTRL}}p</sendKeys>

You can find more on the syntax of the send keys here:

http://blogs.msdn.com/robch/archive/2008/05/07/sending-keys-using-custom-
wsrmacros.aspx

<insertText>

Like the other tags so far, this one also needs to be properly terminated with a
</insertText> tag.

Like the <sendKeys> tag, this tag will insert any text between the opening and closing
tag. Unlike <sendKeys> you can have plenty of space in between. For example:

<insertText>
Line 1
Line 2

Line 3 was blank and this is line 4
</insertText>

<run>

This tag allows you to run commands similar to executing them from the command line.

The tag:

<run command="C:\Program Files\Mozilla Firefox\Firefox.exe" params=""/>

will run the Firefox browser. Notice you can also pass the program parameters with the
“params” attribute. This would be useful if for instance you’d like to start notepad and
open a particular text file. It would look something like this:

<run command="notepad.exe" params="MyFile.txt"/>

Note this tag is terminated differently than the others so far. There isn’t a </run> tag.

<appIsInForeground>

<appIsInForeground processName="notepad.exe"/>

Allows you to restrict the speech macro command to a specific application.

You can also use “windowTitle” and “windowTitleContains” attributes instead of the
“processName” attribute.

http://blogs.msdn.com/robch/archive/2008/05/07/sending-keys-using-custom-wsrmacros.aspx
http://blogs.msdn.com/robch/archive/2008/05/07/sending-keys-using-custom-wsrmacros.aspx

So if you were interested in having a macro only execute when you had a specific
document open in Word, the tag might look something like this:

<appIsInForeground windowTitleContains=”MyDoc.doc”/>

<speak>

This tells the speech recognition system to talk back to you! Whatever text you put
between the speak tags will be audible on the speakers.

<speak>the voice box is a wonderful instrument</speak>

<setFeedbackText>

The following code:

<setTextFeedback>Hello, World!</setTextFeedback>

Would produce this in the feedback text area:

<switchToApp>

This tag allows you to switch focus to an already running application.

<switchToApp windowTitleContains=”MyDoc.doc”/>

would switch to your MyDoc document. You can also use the windowTitle attribute
here.

Along this same type of functionality there are the following additional tags:

<minimizeApp/>
<maximizeApp/>
<restoreApp/>
<closeApp/>

These also support the windowTitleContains and windowTitle attributes

<prompt>

Getting input from the user can be accomplished with the prompt tag like so:

<prompt title="Hello" resultState="ans">Please enter your name</prompt>

This will produce a prompt box like this:

The resultState=”ans” will store the input from the user in the ,*ans+- variable that can
be used in your macro. Note: you can name the resultState variable anything you like.

Two similar tags the alert and confirm:

<alert title=”” timeout=””/>
<confirm title=”” timeout=””/>

<waitFor>

Allows you to pause macro execution

<waitFor seconds=”.25”/>

Other acceptable attributes include “anyStateNameIsSet” and “allStateNamesAreSet”
but the seconds attribute is most often used.

<emulateRecognition>

Exactly as the tags name implies, it allows you to emulate a spoken command.

<emulateRecognition>stop listening</emulateRecognition>

Would send the recognizer the text “stop listening” just as if it had been spoken.

If you’re still hungry for more, don’t worry. There is plenty that hasn’t been described in this
brief overview of macro tags. We’ve only touched on the most common ones. Check out some
of the online groups and blogs. There’s a growing base of information available.

Train From Text

The purpose of “Train From Text” is to improve the acoustic model of your user profile. The
“Rainbow Passage” is suggested as it was developed by linguists and contains all of the
phonemes, individual sounds (the b in bat, for example), found in the English language.

If you wish to train from text other than the Rainbow Passage, choose ‘Clear’, then copy/paste
your selected text into the textbox area.

When you are ready to begin choose ‘Begin Training’.

Add To Dictionary

The purpose of “Add To Dictionary” tab is to help the speech recognition engine recognize
difficult to understand words and phrases.

If you find certain words or phrases consistently being misunderstood, you can add these to
your personal speech dictionary, as well as record a pronunciation. This will increase the
chances of accurate recognition for these particular words and phrases.

To use this feature, copy and paste words and/or phrases in the text box area. Each word or
phrase should be on a separate line, for instance:

alpha
beta
zebras at the zoo
etcetera and so forth

When you are ready to begin adding these words to your personal dictionary, click (or say) ‘Add
Words’ and you will be guided through the process by the Speech Dictionary Wizard where you
will be given the option of recording a pronunciation for each word or phrase.

Important Note: If you would like to edit (change or delete) words from your speech dictionary,
leave the list blank and say (or click) ‘Add To Dictionary’.

Here’s a screenshot of the ‘Add To Dictionary’ tab loaded with some of my troublesome words.
For instance the word coupon; instead of saying coo-pon, I prefer to say q-pon. The only way to
get speech recognition to recognize this was to add the word to the dictionary with a recorded
pronunciation. This is important to note. It is highly recommended that you always record a
pronunciation when adding words to the dictionary. It will result in more accurate recognition
than just adding words.

Transcription

An important note on transcription: There will be a noticeable increase in recognition accuracy
if you use the ‘Train From Text’ and ‘Add From Text’ features before using transcription.

If you have a portable voice recorder, this feature may be just what you’re looking for. With a
portable voice recorder, you can dictate notes, memos and record thoughts and ideas while
you’re away from the computer. Once you return, just copy the sound file to your computer,
convert to a wave (.WAV) file (note some voice recorders save files as .wav), then choose the
‘Browse’ button to point the transcription module to the wave file and choose ‘Begin
Transcription’. You’ll soon see your words appearing in the transcription textbox! Once the
transcription is complete, the entire text will automatically be selected and copied onto the
clipboard, ready for you to paste into a more suitable application.

Add From File

This feature is best described as follows:

“Add from File” allows you to improve the accuracy of your "Language Model". It's not the
same as adding words to your personal dictionary but works by taking the text that you pass it,
parses it into words, and then records the relative frequencies of occurrence of each word with
respect to the words around it. If you use documents that represent your style of speaking, this
feature will improve dictation accuracy.”

Choose ‘Browse’ to find the document you wish to add, then choose ‘Begin Add from File’. The
file will be opened and read into the language processor and quickly added to your language
model.

Tips & Tricks

This section contains shortcuts and tips for using the WSR Toolkit.

 Using ‘Add From File’ With Multiple Files
Currently the ‘Add From File’ feature only analyzes one file at a time. It may become
burdensome if you have many files you would like for it to analyze. You can, of course,
create one file from multiple files. Within Microsoft Word, here’s how:

1. Create a new, blank document
2. Choose the ‘Insert’ tab (ALT-N)
3. In the ‘Text’ ribbon box, choose ‘Object’, ‘Text from File’

You can now select multiple files and they will be concatenated into one large file. Save
this file within MS-Word. You can now browse on the ‘Add From File’ tab to this large
file.

 Increasing Speech Recognition Accuracy
Following is a recommended procedure for increasing speech recognition accuracy with
the Toolkit. (Note: it assumes you are using a ‘new’ speech profile)

1. Set up the microphone in Windows Vista (you’ll read the “Peter dictates to his

computer...” passage)
2. Run WSR Toolkit and read the Rainbow Passage on the ‘Train From Text’ tab.
3. Select the ‘Add From File’ tab and browse/select one of your MS-Word document or

plain text file that represents your style of writing/speaking.

Additional tips for increased recognition accuracy:

1. Be diligent about correcting mistakes using “correct that” instead of simply retyping.
2. Add words (or phrases) to your personal speech dictionary (WSR Toolkit ‘Add To

Dictionary’ tab) that are repeatedly misrecognized. First try adding them without
pronunciation, then if it still gets it wrong, delete and re-add the word (or phrase)
with pronunciation.

Index

Command Key, 15
Command Sequence Viewer

Up, Down & Remove Buttons, 13
context

Global Context, 7
copy web address, 11
insert a timing delay, 12
Keystroke Preview, 11
Microsoft .NET 3.5 Framework, 4
Numbers, Letters, Words” textbox, 11
surf the net, 9
trigger word, 6
WSR, 2

	Introduction
	Table of Contents
	Installing the WSR Toolkit
	Command Macros
	Train From Text
	Add To Dictionary
	Transcription
	Add From File
	Tips & Tricks
	Index

